
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 288 (2005) 215–234
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Structural system identification in time domain using
measured acceleration

Joo Sung Kanga, Seung-Keun Parka, Soobong Shinb, Hae Sung Leea,�

aDepartment of Civil Engineering, Seoul National University, Seoul, Republic of Korea
bDepartment of Civil Engineering, Inha University, Incheon, Republic of Korea

Received 2 February 2004; received in revised form 23 April 2004; accepted 4 January 2005

Available online 10 May 2005
Abstract

This paper presents a system identification scheme in time domain to estimate stiffness and damping
parameters of a structure using measured acceleration. An error function is defined as the time integral of
the least-squared errors between measured accelerations and calculated accelerations by a numerical model
of a structure. To alleviate the ill-posedness of SI problems a regularization technique is employed and a
new regularization function for the time-domain SI is proposed. The regularization factor is determined by
the geometric mean scheme. The validity of the proposed method is demonstrated by a numerical
simulation study on a two-span truss bridge and by an experimental laboratory study on a three-story shear
building model.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Various system identification (SI) schemes have been developed to verify structural models or to
assess damage in a structure during last few decades. Based on the types of measured response, SI
algorithms can be classified by static SI [1–4], frequency-domain SI [5–7], and time-domain SI
[8–11]. Since it is difficult to measure static displacements of actual structures, frequency-domain
see front matter r 2005 Elsevier Ltd. All rights reserved.
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SI or time-domain SI may be more practical in real applications. Even if frequency-domain SI
algorithms utilize the same source of dynamic responses as time-domain SI, the amount of data
dealt with is remarkably reduced through transformation. Due to the ease in handling data,
frequency-domain SI algorithms have been more widely developed and applied. However, local
damage may influence higher modes that are usually difficult to measure from experiments [12].
Moreover, damping properties of structures cannot be estimated in frequency-domain SI. To
overcome these drawbacks of the frequency-domain SI and to yield more meaningful
identification results, the time-domain SI schemes are an attractive alternative.
In developing a time-domain SI algorithm, the incomplete measurements in space and state

should be considered in addition to measurement noise [8]. The incompleteness in space occurs
when structural responses are not measured at all degrees-of-freedom (dof) corresponding to its
numerical model. Some SI algorithms circumvent this difficulty by including the unmeasured dof
as system parameters to be estimated in SI [8]. The incompleteness in state also occurs in most
dynamic measurements because only one state of acceleration, velocity, or displacement time
history is usually measured. Numerical schemes for integrating or differentiating the measured
state vector [8] are applied to compute unmeasured state vectors. Since the numerical schemes
naturally develop computational error and amplify noise in measured responses, the most
desirable way may be to avoid computing unmeasured responses using measured data in
formulating a SI algorithm.
This paper presents a new time-domain SI algorithm using an output error estimator based on

acceleration. The proposed SI algorithm estimates structural parameters through the minimiza-
tion of an error function defined by the time integral of the least-squared error between the
measured and the calculated accelerations. Since the error function is defined only with the time
history of acceleration measured at limited locations, the algorithm does not require any
information on actual dynamic responses other than acceleration.
It is well known that a SI problem is a type of ill-posed problem [13,14], which suffers from

severe instabilities caused by noise and incompleteness in measurement. The instabilities are
characterized as non-existence, non-uniqueness and discontinuity of solutions. To alleviate the ill-
posedness of SI problems, the regularization technique has been widely employed for various
engineering problems [2–4,13,14]. In the regularization technique an additional constraint on
system parameters, which is referred to as a regularization function, is imposed to the original
minimization problem defined by the error function. It is very important to define a proper
regularization function that is able to describe characteristics of a SI problem in hand [2–4,14].
This paper proposes a new regularization function for time-domain SI defined as the time
integral of the squared first time derivative of system parameters. The geometric mean scheme
(GMS) [4] is utilized throughout the study to determine the regularization factor multiplied to the
regularization function.
It is assumed that mass is known a priori and structures behave linearly. Since structural

dynamic behaviors are not only dependent on mass and stiffness but also on damping properties,
estimation of damping parameters may be important for correct identification of structural
systems. Nevertheless, most time-domain SI schemes have assumed damping as known and thus
dealt solely with stiffness parameters [9,10]. In the paper, the structural damping is modeled by the
Rayleigh damping [15], and two Rayleigh damping coefficients are estimated together with the
unknown stiffness parameters.
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To validate the proposed method, a numerical simulation study on a two-span truss bridge and
an experimental laboratory study on a three-story shear building are carried out. Damage is
simulated as the reduction in axial rigidities of a few members for the simulation study while
damage is implemented by loosening the bolts at joints for the experimental study. To examine the
developed algorithm with noisy measured data, random noise is added to the generated time
history of acceleration in the simulation study. Discussions on numerical results and behaviors of
the proposed method are presented.
2. Parameter estimation in time domain

2.1. Error function in time domain

The equation of linear vibrational motion of a structure can be expressed by

MaðtÞ þ CðxÞvðtÞ þ KðxÞuðtÞ ¼ pðtÞ, (1)

where M, C, K, p and x are mass, damping, stiffness matrix of a structure, load vector and the
system parameter vector, respectively. Acceleration, velocity and displacement vector of a
structure are denoted as a, v and u, respectively, in Eq. (1). The system parameters include stiffness
and damping properties of a structure, which need to be identified.
In the formulation, it is assumed that mass properties, load history and the initial conditions for

Eq. (1) are known a priori, and that the system parameters are invariant in time. The unknown
system parameters are identified through the following minimization of the least-squared error
between calculated and measured accelerations at observation points from the beginning up to
current time t.

Min
x

Pðx; tÞ ¼
1

2

Z t

0

k~aðx; tÞ � āðtÞk2 dt subject to rðxÞp0, (2)

where ~a, ā and r are the calculated and the measured acceleration at observation points and
constraint vector, respectively. The notation k � k represents the Euclidean norm of a vector.
The parameter estimation method defined by a minimization problem as (2) is a type of ill-

posed inverse problem, which suffers from instabilities such as non-existence, non-uniqueness and
discontinuity of solutions [13,14]. The instabilities are triggered when measured data are
incomplete and polluted by noise. Because of the instabilities, the minimization problem given in
Eq. (2) may yield meaningless solutions or diverge in optimization process [4]. The regularization
technique [2–4,13,14] is considered to be a rigorous way to overcome the ill-posedness of inverse
problems. In the regularization technique, the original objective function is modified by adding a
positive definite regularization function [2–4]. For a successful SI, a proper regularization
function, which clearly defines characteristics of problems, should be selected.

2.2. Regularization function

As the system parameters are assumed to be invariant in time, the minimization problem (2) is
supposed to yield the same results at any t in case the measured accelerations are complete and
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noiseless. However, the measured data are usually incomplete and polluted by various kinds of
noise. Furthermore, the amount of measured data used in the SI varies with t. Due to the
aforementioned facts, the minimization problem (2) yields different system parameters for
different time t as illustrated in Fig. 1(a). That is, the system parameters are constant in the
interval of 0otpt for the fixed t, but the constant values of the system parameters vary for
different t. Fig. 1(b) shows a schematic plot of a system parameter identified at different t drawn
against time.
In case the time-invariant assumption for the system parameters cannot be satisfied exactly by

the nature of the problem, the magnitude of the time variance of system parameters should be
reduced as much as possible by imposing the following minimization problem.

Min
x

PR ¼
1

2

Z t

0

dxðtÞ

dt

����
����
2

dt. (3)

Here, xðtÞ denotes the system parameters identified by using the measured accelerations from the
initial time 0 to time t as shown in Fig. 1(a). The minimization problem (3) may be considered as a
weak constraint or a penalty function to impose the time-invariant assumption of the system
parameters. The integral expression of Eq. (3) defines total change of the system parameters up to
the current time. The objective function PR defined in Eq. (3) is used as the regularization
function for time-domain SI.
A modified minimization problem with the regularization function (3) for the time-domain SI is

defined as follows:

Min
xðtÞ

PðxðtÞ; tÞ ¼
1

2

Z t

0

k~aðxðtÞ; tÞ � āðtÞk2 dt þ
l2

2

Z t

0

dxðtÞ

dt

����
����
2

dt subject to rðxÞp0, (4)
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Fig. 1. (a) Time-domain SI at two different times. (b) Variation of a system parameter in time.
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where l is the regularization factor. Notice that the system parameters in Eq. (4) depend upon
current time t. The regularization effect in parameter estimation is controlled by the magnitude of
the regularization factor. The regularization effect diminishes for a small regularization factor
while the regularization function dominates for a large regularization factor [2–4]. In either case,
the minimization problem (4) is unable to find meaningful system parameters due to instabilities
or dominant regularization effects on the system parameters. Therefore, the selection of a proper
regularization factor is very critical for the stability and accuracy of the solution of Eq. (4). The
optimal regularization factor is determined by the geometric mean scheme (GMS) proposed by
Park et al. [4]. In the GMS, the optimal regularization factor is defined as the geometric mean
between the largest and the smallest non-zero singular value [16] of the Hessian matrix of the
discretized error function, which is presented in the next section. The numerical rank [16] should
be considered to determine the smallest non-zero singular value.
2.3. Damping model

It is difficult to model damping properties of real structures, and available damping models may
be simple approximations of actual phenomena [15]. In most previous studies on the parameter
estimation, damping properties of a structure are assumed as known, and thus only stiffness
properties are identified [9,10]. Since damping plays an important role in structural dynamic
responses, the damping properties should be considered properly in parameter estimation.
Among various classical damping models, the modal damping and the Rayleigh damping are

most frequently adopted to model the structural damping. In the modal damping, a damping
matrix is constructed by modal damping ratios, modal frequencies and mode shapes.

C ¼M
XNd

k¼1

2zkok/k/
T
k

 !
M, (5)

where zk, ok and /k are the modal damping ratio, natural frequency and mode shape normalized
to the mass matrix of the kth mode, respectively. In Rayleigh damping, a damping matrix is
represented by a linear combination of the mass matrix and stiffness matrix.

C ¼ a0Mþ a1K, (6)

where a0 and a1 are the Rayleigh damping coefficients. In case the Rayleigh damping is employed,
the modal damping ratios are obtained as follows by equating (5) and (6).

zk ¼
1

2ok

/Tk ða0Mþ a1KÞ/k. (7)

Because neither modal damping nor Rayleigh damping can model actual structural damping
exactly and because modal damping requires more unknowns than the Rayleigh damping in
the parameter estimation, the current formulation employs the Rayleigh damping for SI. The
Rayleigh damping yields a linear fit to the actual damping of a structure. In case more accurate
estimation of the actual damping is required, the Caughey damping model [15], which is the
general form of the Rayleigh damping, may be adopted.
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3. Time discretization and sensitivity

The objective function in Eq. (4) is discretized with respect to time as follows.

PðxðtÞ; tÞ ¼
1

2

Z t

0

k~aðxðtÞ; tÞ � āðtÞk2 dt þ
l2

2

Z t

0

dx

dt

����
����
2

dt

�
1

2

Xnt

k¼1

k~akðxntÞ � ākk
2Dt þ

l2

2

Xnt

k¼1

kxk � xk�1k
2

Dt

¼
1

2

Xnt

k¼1

k~akðxntÞ � ākk
2Dt þ

l2

2

Xnt�1

k¼1

kxk � xk�1k
2

Dt
þ

l2

2

kxnt � xnt�1k
2

Dt
, ð8Þ

where nt represents the number of time steps corresponding to current time t ¼ nt 	 Dt

and the subscript denotes time step. The definitions of the discretized variables used in
Eq. (8) are

~akðxntÞ ¼ ~aðxðtÞ; kDtÞ; āk ¼ āðkDtÞ; xk ¼ xðkDtÞ, (9)

where x0 represents the initial values of the system parameters. Since the system parameters
identified at the previous time steps are included in Eq. (8), the SI procedure should be performed
sequentially for every time step in the interval of 0otptmax, where tmax is the final time for SI.
The system parameters of the previous time steps are known and have no effect on the solution of
the minimization problem for the current time step, and thus the second term of the last equation
in Eq. (8) is omitted from the objective function. The final discretized minimization problem at
time t is written as follows.

Min
xnt

Pðxnt; tÞ ¼
1

2

Xnt

k¼1

k~akðxntÞ � ākk
2Dt þ

l2

2

kxnt � xnt�1k
2

Dt
subject to rðxntÞp0. (10)

Since the minimization problem (10) is nonlinear with respect to the system parameters at time
t, the recursive quadratic programming (RQP) with the Fletcher active set strategy [17] is utilized.
A line search technique is employed to accelerate convergence. The quadratic sub-problem of (10)
for the RQP is defined as

Min
Dxnt

1

2
Dxnt Hþ

l2

Dt
I

� �
Dxnt þ Dxnt

Xnt

k¼1

rx ~akðx̄ntÞ � ð~akðx̄ntÞ � ākÞDt

þ
l2

Dt
Dxnt � ðx̄nt � xnt�1Þ subject to rðx̄nt þ DxntÞp0, ð11Þ

where H and rx are the Gauss–Newton Hessian matrix of the error function and the gradient
operator with respect to the system parameters, respectively, and Dxnt and x̄nt are defined as
follows.

Dxnt ¼ x
j
nt � x

j�1
nt ; x̄nt ¼ x

j�1
nt . (12)
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Here, the superscript j denotes the iterational count for the current time step nt. The Gauss–
Newton Hessian matrix is defined as follows.

H ¼
Xnt

k¼1

rx ~akðx̄ntÞ � rx ~akðx̄ntÞDt. (13)

The Newmark-b method is employed to obtain the acceleration and its sensitivity at each time
step. The displacement and the velocity for the kth time step are expressed in terms of acceleration
as follows.

vkðx̄ntÞ ¼ vk�1ðx̄ntÞ þ Dtðð1� gÞak�1ðx̄ntÞ þ gakðx̄ntÞÞ,

ukðx̄ntÞ ¼ uk�1ðx̄ntÞ þ vk�1ðx̄ntÞDt þ
ðDtÞ2

2
ðð1� 2bÞak�1ðx̄ntÞ þ 2bakðx̄ntÞÞ, ð14Þ

where b and g are the integration constants of the Newmark b-method. Substitution of Eq. (14)
into the equation of motion (1) yields the following well-known expression for the acceleration of
a structure:

akðx̄ntÞ ¼ ðM̂kðx̄ntÞÞ
�1P̂kðx̄ntÞ, (15)

where

M̂kðx̄ntÞ ¼Mþ gDtCðx̄ntÞ þ bðDtÞ2Kðx̄ntÞ,

P̂kðx̄ntÞ ¼ pk � Cðx̄ntÞðvk�1ðx̄ntÞ þ Dtð1� gÞak�1ðx̄ntÞÞ

� Kðx̄ntÞ uk�1ðx̄ntÞ þ Dtvk�1ðx̄ntÞ þ
ðDtÞ2

2
ð1� 2bÞak�1ðx̄ntÞ

� �
. ð16Þ

The sensitivity of acceleration is obtained by the direct differentiation of Eq. (15).

qak

qxi
nt

¼ ðM̂kÞ
�1 qP̂k

qxi
nt

�
qM̂k

qxi
nt

ak

 !
, (17)

where xi
nt is the ith component of system parameter vector at time t, xnt. Once the sensitivity of

acceleration is calculated, the sensitivities of displacement and velocity are easily evaluated by the
direct differentiation of Eq. (14) with respect to the system parameters. The sensitivities of the
initial conditions usually vanish since the initial conditions are independent of the system
parameters. In case, however, a structure is suddenly released from a static equilibrium state, the
sensitivity of the initial displacement to the stiffness parameters exists, and thus the sensitivity of
initial velocity has a non-zero value. In this case, the sensitivity of initial displacement is obtained
by the direct differential of the static equilibrium equation.
4. Validations of the proposed algorithm

The validity of the proposed time-domain SI is demonstrated through a numerical simulation
study for a two-span continuous truss and a laboratory experimental study for a three story shear
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building. The integration constants of the Newmark b-method, b ¼ 1
2
, g ¼ 1

4
, are used for all cases.

The regularization factor is calculated by the GMS.

4.1. Numerical simulation study

A two-span continuous planar truss used in this numerical simulation study is shown in Fig. 2.
The axial rigidity of each member and the Rayleigh damping coefficients are selected as the system
parameters. The material property is selected as typical steel (Young’s modulus ¼ 210GPa,
specific mass ¼ 7850kg=m3). The initial cross sectional areas of top, bottom, vertical, and
diagonal members of the truss are 250, 300, 200, and 220 cm2, respectively. Damage of the truss is
implemented as 40%, 50%, and 55% reductions in the sectional areas of member 7, 16, and 31,
respectively. The damaged members are depicted as dotted lines in Fig. 2. The computed natural
frequencies of the undamaged truss range from 6.6Hz for the lowest mode to 114.7Hz for the
highest mode.
A free vibration is induced by a sudden release of applied loads of 50KN at the mid-spans as

shown in Fig. 2 from the static equilibrium. The measured accelerations are obtained by adding
8% random noise generated from a uniform probability function to acceleration calculated by the
finite element analysis unless otherwise stated. The uniform probability function is selected to
generate to random noise because it generates more widely distributed errors than the normal
distribution for the given amplitude of noise. The observation points are located at 12 bottom
nodes of the truss, which are depicted as solid circles in Fig. 2. Acceleration is measured in the
time period from 0 to 1.0 s with the interval of 1

200 s. Horizontal accelerations are measured at the
two observation points located at the roller supports while vertical accelerations are measured at
the other observation points. Modal damping is employed for simulating measured acceleration
while the Rayleigh damping is adopted for the SI. The modal damping ratios used to simulate
measured acceleration are shown in Fig. 8, in which the modal damping ratios vary continuously
from 3% for the first mode to 30% for the last mode. The initial values of the Rayleigh damping
coefficients, a0 and a1 are assumed as 2.32 and 1:05	 10

�3, respectively, and the initial modal
damping ratios calculated by Eq. (7) are also shown in Fig. 8.
The developed time-domain SI algorithm is applied to estimate the system parameters of the

damaged structure using acceleration measured for 1.0 s at the observation points. The total
number of unknown parameters estimated is 57 including 55 member axial rigidities and two
damping coefficients. The variations of axial rigidities of the damaged members and three typical
1
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undamaged members in the right span are drawn with respect to time in Figs. 3 and 4,
respectively. From the figures, it is clearly seen that the estimated stiffness parameters of damaged
members converge to the actual values as time steps proceed. Fig. 5 shows the axial rigidity of
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each member identified at the final time t ¼ 1:0 s. The vertical axes of Figs. 3–5 represent the
normalized axial rigidity with respect to the initial value of each member. The proposed SI scheme
identifies the damaged members and their damage severity quite accurately. The identified axial
rigidities oscillate moderately within the range of �10% for 44 undamaged members out of 52
while the oscillation magnitudes of the other eight undamaged members are a little higher than
10%. Since, however, axial rigidities of the damaged members are reduced prominently compared
with those of the other members, the damaged members are clearly distinguished from
undamaged members. The identified axial rigidities with noiseless acceleration data, which
represent the most accurate and stable solution for this example, are shown in Fig. 5 as a dotted
line. Although there is no noise in measurement, the identified stiffness properties oscillate
because of the modeling error [4] in damping. The noisy data and the noiseless data yield almost
identical results, which demonstrates the robustness of the proposed method to measurement
noise. Fig. 6 compares the measured acceleration with the calculated acceleration at the middle of
the left span by the identified system parameters at the final time step. The root mean square error
of the calculated acceleration to the measured acceleration is evaluated as 6.3%. The calculated
acceleration agrees well with the measured one.
Fig. 7 shows the variations of Rayleigh damping coefficients in time. The coefficients for the

mass and the stiffness are drawn against the left and the right vertical axis, respectively. The
damping coefficients converge slower than the stiffness properties. The ratio of the Frobenius
norm [16] of the stiffness term to that of the mass term in the damping matrix is calculated as 32.4,
which means that a1 plays a much more important role than a0 in the damping matrix. The
Frobenius norm of a matrix is defined as the square root of the sum of the squares of all elements
in the given matrix. Fig. 8 shows the variations of damping ratios calculated by Eq. (7) with
frequency at the final time step. The identified Rayleigh damping approximates the exact modal
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damping closely in the range up to 60Hz, which corresponds to the 22nd mode, while the errors in
the modal damping ratios become larger for higher modes. Since, however, the natural
frequencies corresponding to dominant lower modes are much less than 60Hz, such
approximation is good enough to identify the system parameters and to match the dynamic
response correctly.
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Fig. 9 shows the variation of the identified axial rigidities of the damaged members with time in
case the Rayleigh damping coefficients are fixed at their initial values without being estimated. As
shown in the figure, the solution converges to totally meaningless values. At the earlier time steps,
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the optimization procedure does not converge even after 30 iterations. Since the identified axial
rigidities at the final step oscillate too severely, the results are not presented. This oscillation
occurs because the energy dissipation caused by damping cannot be modeled properly by merely
adjusting the stiffness parameters of a structure without allowing the correction of damping
characteristics. Therefore, the damping characteristics should be estimated through SI procedure
in case the accurate damping characteristics are not known a priori, which is true for actual
situations.
4.2. Experimental study

An experimental laboratory study is carried to verify the developed time-domain SI algorithm.
A three-story shear-building model and its numerical model are shown in Figs. 10 and 11,
respectively. The floor plate, which is supported by four steel columns, consists of a 45 cm	 45 cm
rectangular steel plate welded to 5mm plates on all four sides to increase the flexural stiffness and
Fig. 10. Three-story shear building model.
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Table 1

Cross sectional properties and flexural rigidities of columns

Column Thickness (cm) Area ðcm2Þ Mass (g) EI ðN-m2Þ

1st story 0.3 1.2 1196 75.6

2nd story 0.2 0.8 868 22.4

3rd story 0.2 0.8 870 22.4
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to connect the floor plate to the columns. A column in each story is connected to the bottom and
upper floor plates by a bolt independently of the columns of the other story. Two sets of cross
bracings are installed in the plane perpendicular to the plane of vibration to prevent out-of-plane
vibrations in each story.
The cross sectional properties, weights and flexural rigidities of the columns are given in

Table 1. In the table, the cross sectional properties are for one column, while the weight and the
flexural rigidity represent the sum of four columns in each story. The dimension and weight of
each column and floor plate are measured with calipers and a scale. The Young’s modulus of each
column is not measured through a material test, and is assumed as a representative value of steel,
210GPa. The flexural rigidity of each story in Table 1 is a calculated rigidity by the measured
dimensions of a column and the assumed Young’s modulus, and is referred to as the measured
flexural rigidity hereafter. Each column is modeled by two beam elements for an accurate dynamic
analysis, and thus there are nine dof in the numerical model. The natural frequencies for the
horizontal modes of the finite element model with the properties summarized in Table 1 are 2.43,
6.58 and 9.26Hz.
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Fig. 12. Close look of a damaged joint.
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Accelerometers are placed horizontally in the plane of vibration at the center of each floor plate,
and time histories of accelerations are measured at the sampling rate of 50Hz for 200 s and the
measured accelerations during the first 40 s are used for the identification. Free vibration is
induced by the sudden release of a hanging steel block of 12.78 kg as shown in Fig. 11. Due to
friction between the support and the cable hanging the weight, 104.5N (83.4% of the total weight)
is applied to the structure, which is measured by a load cell.
The proposed SI is applied for the intact structure and a damaged structure. Damage of the

shear building is introduced by loosening two bolts out of four at the joints between the columns
and the floor plate at the 1st and 2nd floor as shown in Fig. 12. Two bolts are loosened at the top
of the two columns in the 1st and the 2nd story, while the bolts at the bottom of the columns in
the stories are fixed as the intact state. Therefore, the columns with loosened bolts behave like
fixed-hinged beams. The flexural rigidity of each story and the two Rayleigh damping coefficients
are the system parameters to be estimated for this example. The measured flexural rigidities shown
in Table 1 are used as the initial flexural rigidities of the intact structure for SI while the flexural
rigidities identified for the intact structure are taken as the initial values of the damaged structure.
Three measurement cases are tried for the damaged structure. The acceleration data measured at
all floors, the 2nd and the 3rd floor, and only the 3rd floor are used in measurement cases I, II, and
III, respectively. Only measurement case I, which is believed to yield the most accurate results, is
tried for the intact structure.
Fig. 13 shows the measured accelerations at the 3rd floor for the intact structure and the

damaged structure. The decrease in the natural frequency due to damage is clearly noticeable.
Since the loosened joints act like hinges rather than fixed joints, the reduction of the total flexural
stiffness of the four columns with the loosened bolts is approximately estimated as 62.5% of their
original stiffness by an elementary calculation of structural analysis.

2	 12EI=l þ 2	 3EI=l

4	 12EI=l
	 100 ¼ 62:5%. (18)

The variation of identified flexural rigidity of each story for measurement case I is shown in
Figs. 14 and 15 for the intact structure and the damaged structure, respectively. The flexural
rigidities converge very fast in both cases. Table 2 shows the identified flexural rigidities. For the
intact structure, the identified flexural rigidity of the 1st and the 3rd story increase by 35% and
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Fig. 14. Variation of flexural rigidities in the intact structure.
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Fig. 13. Time history of acceleration of the three story shear building.
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5.8%, respectively, while that of the 2nd floor decreases by 13.4% from their initial values. It
seems that the changes in the flexual rigidities from the measured values are mainly caused by the
damping characteristics of the frame since the natural frequencies do not change much compared
to the identified damping ratios in Table 4. Especially, the flexural rigidity of the 1st story, which
has the lowest sensitivity to the frequency of the dominant first mode, changes most to model a
proper damping ratio of each mode without affecting the natural frequency.
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Fig. 15. Variation of flexural rigidities in the damaged structure.

Table 2

Identified flexural rigidity of each story (Unit: N�m2)

Column Measured Intact (Case I) Damaged (Case I) Damaged (Case II) Damaged (Case III)

1st story 75.6 102.4 60.8 60.3 75.3

2nd story 22.4 19.4 11.3 11.3 10.9

3rd story 22.4 23.7 20.7 20.7 20.1
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The damage status should be determined based on the identified stiffness parameters of the
intact structure since the stiffness parameters may vary to model the actual damping
characteristics by the Rayleigh damping regardless of the damage status of the frame. Damage
due to the loosened bolt at the 1st and 2nd floors is clearly assured by comparing Fig. 14 with
Fig. 15. For the damaged structure, the flexural rigidities of the 1st and the 2nd story decrease to
58% and 59% of the identified values for the intact structure, respectively, for measurement cases
I and II, which are very close to the expected stiffness reduction given in Eq. (18). The damage of
the 1st story seems to be underestimated for measurement case III. Nevertheless, the proposed
method yields consistent results for the damaged structure in all measurement cases.
Table 3 shows the measured and identified natural frequencies. The measured natural

frequencies are obtained by FFT using the measured acceleration data at the 3rd floor, while the
identified natural frequencies are calculated by the eigenvalue analysis of the structure with
identified system parameters. The identified frequencies for all cases agree very well with the
measured natural frequencies. The natural frequencies decrease in the damaged structure for all
modes. The identified modal damping ratios are shown in Table 4. The damping ratios increase in
the damaged structure for all modes, and identified results are consistent in all measurement cases.
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Table 4

Initial and identified modal damping ratio (Unit: %)

Mode Initial Intact (Case I) Damaged (Case I) Damaged (Case II) Damaged (Case III)

1st 1.2 0.44 0.45 0.47 0.47

2nd 3.1 0.67 0.87 1.11 0.98

3rd 4.7 0.91 1.07 1.35 1.29
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Fig. 16. Measured and calculated acceleration at the 3rd floor of the damaged structure.

Table 3

Identified natural frequency (Unit: Hz)

Mode Measureda Identified

Intact Damaged Intact (Case I) Damaged (Case I) Damaged (Case II) Damaged (Case III)

1st 2.39 1.88 2.40 1.89 1.89 1.89

2nd 6.48 5.93 6.86 6.18 6.18 6.18

3rd 8.95 7.28 10.01 7.77 7.75 8.36

aCalculated by FFT using the acceleration data at the 3rd floor.
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It is believed that the impact between the columns and side plates of the 1st and 2nd floor during
the dynamic motion of the damaged structure increases the rate of energy dissipation. The
calculated acceleration using the converged system parameters at the final time step is compared
with the measured acceleration at the 3rd floor for the damaged structure in Fig. 16. Since the
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calculated and measured accelerations agree well each other in an overall sense, it is concluded
that the system parameters estimated by the proposed method represent the actual status of the
structure closely.
5. Conclusion

A time-domain SI using measured acceleration data is proposed. The system parameters
include the damping parameters as well as the stiffness parameters of a structure. The Rayleigh
damping is used to estimate the damping characteristics of a structure. The time integral of the
least-squared errors between calculated acceleration and measured acceleration is adopted as an
error function. The regularization technique is employed to alleviate the ill-posedness of the
inverse problem in SI. A new regularization function is proposed for the time-domain SI. The
GMS is utilized to determine the optimal regularization factor.
It is confirmed that the damping characteristics should be adjusted properly according to

measured acceleration data, and that a meaningless solution may be obtained without proper
estimation of damping characteristics. Although it is not possible to form the exact damping
matrix of a structure, it is very important to approximate the damping parameters to the real
damping as closely as possible. The proposed method is able to estimate the stiffness properties
accurately even though the damping characteristics are approximated by the Rayleigh damping.
The proposed method yields accurate and stable solutions for numerically generated data and the
experimentally measured data.
This paper focuses on developing a time-domain SI algorithm rather than a damage detection

scheme. Since SI problems are ill-posed and their solutions are very sensitive to noise components
in measurement, a reliable damage detection algorithm requires further development based on the
proposed SI algorithm. It is believed the proposed method provides a very powerful engineering
tool to identify dynamic characteristics of structures, and provides a fundamental SI algorithm to
implement a reliable damage detection scheme in structures using measured accelerations.
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